Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.070
Filtrar
1.
Anim Reprod ; 21(1): e20230107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562606

RESUMO

One of the crucial aspects to be considered for successful in vitro production (IVP) of embryos is the composition of the various media used throughout the stages of this reproductive biotechnology. The cell culture media employed should fulfill the metabolic requirements of both gametes during oocyte maturation and sperm development, as well as the embryo during its initial cell divisions. Most IVP protocols incorporate blood serum into the media composition as a source of hormones, proteins, growth factors, and nutrients. Numerous studies have suggested Platelet-Rich Plasma (PRP) as a substitute for fetal sera in cell culture, particularly for stem cells. Therefore, the objective of this study is to assess the potential use of PRP as a replacement for fetal bovine serum (FBS) during oocyte maturation for in vitro production of bovine embryos. During in vitro maturation (IVM), cumulus-oocyte complexes (COCs) were allocated into the following experimental groups: Group G1 (IVM medium with 5% PRP); Group G2 (MIV medium with 5% PRP and 5% SFB); Group G3 (MIV medium with 5% SFB); and Group G4 (MIV medium without either PRP or SFB). Subsequently, the cumulus-oocyte complexes were fertilized with semen from a single bull, and the resulting zygotes were cultured for seven days. Cleavage and blastocyst formation rates were assessed on days 2 and 7 of embryonic development, respectively. The quality of matured COCs was also evaluated by analyzing the gene expression of HSP70, an important protein associated with cellular stress. The results demonstrated that there were no significant differences among the experimental groups in terms of embryo production rates, both in the initial cleavage stages and blastocyst formation (except for the G4 group, which exhibited a lower blastocyst formation rate on D7, as expected). This indicates that PRP could be a cost-effective alternative to SFB in the IVP of embryos.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38558335

RESUMO

This study investigated the effects of the nitrogen retention composite additives Ca(H2PO4)2 and MgSO4 on lignocellulose degradation, maturation, and fungal communities in composts. The study included control (C, without Ca(H2PO4)2 and MgSO4), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2). The results showed that Ca(H2PO4)2 and MgSO4 enhanced the degradation of total organic carbon (TOC) and promoted the degradation of lignocellulose in compost, with CaPM2 showing the highest TOC and lignocellulose degradation. Changes in the three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) of dissolved organic matter (DOM) components in compost indicated that the treatment group with the addition of Ca(H2PO4)2 and MgSO4 promoted the production of humic acids (HAs) and increased the degree of compost decomposition, with CaPM2 demonstrating the highest degree of decomposition. The addition of Ca(H2PO4)2 and MgSO4 modified the composition of the fungal community. Ca(H2PO4)2 and MgSO4 increased the relative abundance of Ascomycota, decreased unclassified_Fungi, and Glomeromycota, and activated the fungal genera Thermomyces and Aspergillus, which can degrade lignin and cellulose during the thermophilic stage of composting. Ca(H2PO4)2 and MgSO4 also increased the abundance of Saprotroph, particularly undefined Saprotroph. In conclusion, the addition of Ca(H2PO4)2 and MgSO4 in composting activated fungal communities involved in lignocellulose degradation, promoted the degradation of lignocellulose, and enhanced the maturation degree of compost.

3.
Andrology ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576152

RESUMO

BACKGROUND: The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE: The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS: The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS: The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS: Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.

4.
Eur J Immunol ; : e2451056, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593351

RESUMO

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.

5.
J Sci Med Sport ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38594115

RESUMO

OBJECTIVES: Inter-individual developmental differences confound the capability to accurately evaluate youth athletic performance, highlighting the need for considerate methodology and analytical approaches. The present study demonstrated how Percentile Comparison Methods (PCMs) were developed, tested, and applied to identify athlete developmental profiles in Australian youth swimming. DESIGN: Cross-sectional. METHODS: Participants were N = 866 female 100-metre (m) Front-Crawl swimmers, aged 9-15 years, competing at 36 Australian regional-national level long course events. At respective events, swim performance time was collated alongside, age, date of birth, and anthropometric measures to identify age group, relative age, and maturity status. Quadratic relative age and maturity status with 100-m performance regression trendlines were generated. Then, individual swim performances at a given relative age or maturity status were converted into percentile rank distributions and compared with raw (unadjusted) annual age-group performance percentile ranks. RESULTS: At a cohort level, initial testing confirmed relative age and maturity-adjusted percentile rankings were associated with general rank improvements for relatively younger and later maturing swimmers compared to raw ranks (and vice versa). When assessing individual swimmer plots, where three percentile rank scores were compared and rank change threshold criteria applied, five Percentile Comparison Method profile types were identified, namely: 'Early Developing' (19 %); 'Later Developing' (18 %); 'Consistent' (15 %); 'Mixed' (38 %) and 'Counteracting' (10 %). Percentile Comparison Method plots helped identify developmentally (dis-)advantaged swimmers; specific factors leading to (dis-)advantage, and likely onward development trajectories. CONCLUSIONS: Overall and with practical considerations, Percentile Comparison Methods can improve the validity of youth athletic performance evaluation as well as inform athlete development programming.

6.
J Exp Bot ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597771

RESUMO

Global climate change has already brought noticeable alterations to multiple regions of our planet. Several important steps of plant growth and development, such as embryogenesis, can be affected by environmental changes. For instance, these changes would affect how stored nutrients are used during early stages of seed germination as it transitions from a heterotrophic to autotrophic metabolism, a critical period for the seedling's survival. In this perspective, we provide a brief description of relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change. As examples of the effects associated with climate change are increased CO2 levels and changes in temperature. During seed development, most of the nutrients stored in the seed are accumulated during the seed maturation stage. These nutrients include, depending on the plant species, carbohydrates, lipids and proteins. Regarding micronutrients, it has also been established that iron, a key micronutrient for various electron transfer processes in plant cells, accumulates during embryo maturation. Several articles have been published indicating that climate change can affect the quality of the seed, in terms of total nutritional content, but also, it may affect seed production. Here we discuss the potential effects of temperature and CO2 increase from an embryo autonomous point of view, in an attempt to separate the maternal effects from embryonic effects.

7.
Neonatology ; : 1-10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588640

RESUMO

INTRODUCTION: The primary aim was to analyze any coupling of heart rate (HR)/arterial oxygen saturation (SpO2) and regional cerebral oxygen saturation (rScO2) and regional cerebral fractional tissue oxygen extraction (cFTOE) during immediate transition after birth in term and preterm neonates to gain more insight into interactions. METHODS: The present study is a post hoc analysis of data from 106 neonates, obtained from a prospective, observational study. Measurements of HR, SpO2, rScO2, and cFTOE were performed during the first 15 min after birth. The linear and nonlinear correlation were computed between these parameters in a sliding window. The resulting coupling curves were clustered. After clustering, demographic data of the clusters were de-blinded and compared. RESULTS: Due to missing data, 58 out of 106 eligible patients were excluded. Two clusters were obtained: cluster 1 (N = 39) and cluster 2 (N = 9). SpO2 had linear and nonlinear correlations with rScO2 and cFTOE, whereby the correlations with rScO2 were more pronounced in cluster 2. HR-rScO2 and HR-cFTOE demonstrated a nonlinear correlation in both clusters, again being more pronounced in cluster 2, whereby linear correlations were mainly absent. After de-blinding, the demographic data revealed that the neonates in cluster 2 had significantly lower gestational age (mainly preterm) compared to cluster 1 (mainly term). DISCUSSION: Besides SpO2, also HR demonstrated a nonlinear correlation with rScO2 and cFTOE in term and preterm neonates during immediate transition after birth. In addition, the coupling of SpO2 and HR with cerebral oxygenation was more pronounced in neonates with a lower gestational age.

8.
Int J Biol Macromol ; 267(Pt 1): 131417, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582457

RESUMO

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.

9.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 253-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599846

RESUMO

I. Watanabe et al. isolated approximately 30 strains of RNA phages from various parts of Japan. To isolate RNA phages, they assessed the infection specificity of male Escherichia coli and RNase sensitivity. They found that the isolated strains of RNA phages could be serologically separated into three groups. Furthermore, most of them were serologically related, and the antiphage rabbit serum prepared by one of these phages neutralized most of the other phages. The only serologically unrelated phage was the RNA phage Qß, which was isolated at the Institute for Virus Research, Kyoto University, in 1961.


Assuntos
Fagos RNA , Humanos , Masculino , Coelhos , Animais , Escherichia coli/genética , Japão
10.
Dev Psychobiol ; 66(4): e22492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643360

RESUMO

During adolescence, emotion regulation and reactivity are still developing and are in many ways qualitatively different from adulthood. However, the neurobiological processes underpinning these differences remain poorly understood, including the role of maturing neurotransmitter systems. We combined magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (dACC) and self-reported emotion regulation and reactivity in a sample of typically developed adolescents (n = 37; 13-16 years) and adults (n = 39; 30-40 years), and found that adolescents had higher levels of glutamate to total creatine (tCr) ratio in the dACC than adults. A glutamate Í age group interaction indicated a differential relation between dACC glutamate levels and emotion regulation in adolescents and adults, and within-group follow-up analyses showed that higher levels of glutamate/tCr were related to worse emotion regulation skills in adolescents. We found no age-group differences in gamma-aminobutyric acid+macromolecules (GABA+) levels; however, emotion reactivity was positively related to GABA+/tCr in the adult group, but not in the adolescent group. The results demonstrate that there are developmental changes in the concentration of glutamate, but not GABA+, within the dACC from adolescence to adulthood, in accordance with previous findings indicating earlier maturation of the GABA-ergic than the glutamatergic system. Functionally, glutamate and GABA+ are positively related to emotion regulation and reactivity, respectively, in the mature brain. In the adolescent brain, however, glutamate is negatively related to emotion regulation, and GABA+ is not related to emotion reactivity. The findings are consistent with synaptic pruning of glutamatergic synapses from adolescence to adulthood and highlight the importance of brain maturational processes underlying age-related differences in emotion processing.


Assuntos
Regulação Emocional , Ácido Glutâmico , Adulto , Humanos , Adolescente , Giro do Cíngulo/química , Giro do Cíngulo/fisiologia , Ácido gama-Aminobutírico/análise , Receptores de Antígenos de Linfócitos T/análise
11.
Reprod Biol ; 24(2): 100883, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643607

RESUMO

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.

12.
Eur J Appl Physiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630264

RESUMO

INTRODUCTION: Although neuromuscular function varies significantly between strength and endurance-trained adult athletes, it has yet to be ascertained whether such differences manifest by early adolescence. The aim of the present study was to compare knee extensor neuromuscular characteristics between adolescent athletes who are representative of strength (wrestling) or endurance (triathlon) sports. METHODS: Twenty-three triathletes (TRI), 12 wrestlers (WRE) and 12 untrained (CON) male adolescents aged 13 to 15 years participated in the present study. Maximal voluntary isometric contraction (MVIC) knee extensor (KE) torque was measured, and 100-Hz magnetic doublets were delivered to the femoral nerve during and after KE MVIC to quantify the voluntary activation level (%VA). The doublet peak torque (T100Hz) and normalized vastus lateralis (VL) and rectus femoris (RF) EMG (EMG/M-wave) activities were quantified. VL and RF muscle architecture was also assessed at rest using ultrasound. RESULTS: Absolute and relative (to body mass) KE MVIC torques were significantly higher in WRE than TRI and CON (p < 0.05), but comparable between TRI and CON. No significant differences were observed between groups for %VA, T100Hz or either VL or RF muscle thickness. However, VL EMG/M-wave was higher, RF fascicle length longer, and pennation angle smaller in WRE than TRI and CON (all p < 0.05). CONCLUSION: The wrestlers were stronger than triathletes and controls, potentially as a result of muscle architectural differences and a greater neural activation. Neuromuscular differences can already be detected by early adolescence in males between predominantly endurance and strength sports, which may result from selection bias and/or physical training.

13.
Cytotherapy ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38625072

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor-T (CAR-T) cells have exhibited remarkable efficacy in treating refractory or relapsed multiple myeloma (R/R MM). Although obesity has a favorable value in enhancing the response to immunotherapy, less is known about its predictive value regarding the efficacy and prognosis of CAR-T cell immunotherapy. METHODS: We conducted a retrospective study of 111 patients with R/R MM who underwent CAR-T cell treatment. Using the body mass index (BMI) classification, the patients were divided into a normal-weight group (73/111) and an overweight group (38/111). We investigated the effect of BMI on CAR-T cell therapy outcomes in patients with R/R MM. RESULTS: The objective remission rates after CAR-T cell infusion were 94.7% and 89.0% in the overweight and normal-weight groups, respectively. The duration of response and overall survival were not significant difference between BMI groups. Compared to normal-weight patients, overweight patients had an improved median progression-free survival. There was no significant difference in cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome between the subgroups. In terms of hematological toxicity, the erythrocyte, hemoglobin, platelet, leukocyte and neutrophil recovery was accelerated in the overweight group. Fewer patients in the overweight group displayed moderate percent CD4 and CD4/CD8 ratios compared to the normal-weight group. Furthermore, the percent CD4 ratios were positively correlated with the levels of cytokines [interleukin-2 (IL-2) (day 14), interferon gamma (IFN-γ) (day 7) and tumor necrosis factor alpha (TNF-α) (days 14 and 21)] after cells infusion. On the other hand, BMI was positively associated with the levels of IFN-γ (day 7) and TNF-α (days 14 and 21) after CAR-T cells infusion. CONCLUSIONS: Overall, this study highlights the potential beneficial effect of a higher BMI on CAR-T cell therapy outcomes.

14.
Zebrafish ; 21(2): 171-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621215

RESUMO

The transgenic (TG) zebrafish allows researchers to bio-image specific biological phenomena in cells and tissues in vivo. We established TG lines to monitor changes in the ovaries of live fish. The original TG line with ovarian fluorescence was occasionally established. Although the cDNA integrated into the line was constructed for the expression of enhanced green fluorescent protein (EGFP) driven by the medaka ß-actin promoter, the expression of EGFP is restricted to the oocytes and gills in adult fish. Furthermore, we found that germinal vesicles (GVs) in oocytes of the established line can be observed by relatively strong fluorescence around the GV. In this study, we tried to capture the dynamic processes of germinal vesicle breakdown (GVBD) during meiotic cell division using the GV fluorescent oocytes. As a result, GV migration and GVBD could be monitored in real time. We also succeeded in observing actin filaments involved in the migration of GV to the animal pole. This strain can be used for education in the process of oocyte meiotic cell division.


Assuntos
Ectoderma/embriologia , Estruturas Embrionárias , Ovário , Peixe-Zebra , Feminino , Animais , Oócitos , Animais Geneticamente Modificados , Divisão Celular
15.
Front Cell Neurosci ; 18: 1369282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566840

RESUMO

Introduction: Hair cells (HCs) of the cochlea are responsible for sound transduction and hearing perception in mammals. Genetic mutations in the transcription factor Pou4f3 cause non-syndromic autosomal dominant hearing loss in humans (DFNA15) which varies in the age of onset depending on the individual mutation. Mouse models with germline deletion or mutations in Pou4f3 have previously demonstrated its critical role in the maturation and survival of cochlear HCs during embryonic development. However, the role of Pou4f3 in auditory function and in the survival or maintenance of cochlear HCs after birth and during adulthood has not been studied. Methods: Therefore, using the inducible CreER-loxP system, we deleted Pou4f3 from mouse cochlear HCs at different postnatal ages, relevant to specific stages of HC maturation and hearing function. Results and discussion: Elevated auditory brainstem response thresholds and significant HC loss were detected in mice with Pou4f3 deletion compared to their control littermates, regardless of the age when Pou4f3 was deleted. However, HC loss occurred more rapidly when Pou4f3 was deleted from immature HCs. Additionally, HC loss caused by Pou4f3 deletion did not affect the number of cochlear supporting cells, but caused a delayed loss of spiral ganglion neurons at 4 months after the deletion. In conclusion, Pou4f3 is necessary for the survival of cochlear HCs and normal hearing at all postnatal ages regardless of their maturation state. Our data also suggest that Pou4f3 indirectly regulates the survival of spiral ganglion neurons.

16.
Plant J ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569066

RESUMO

Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized in Arabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D-nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild-type and cellulose-deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation.

17.
Res Sq ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559233

RESUMO

Objective: Our study develops a generative adversarial network (GAN)-based method that generates faithful synthetic image data of human cardiomyocytes at varying stages in their maturation process, as a tool to significantly enhance the classification accuracy of cells and ultimately assist the throughput of computational analysis of cellular structure and functions. Methods: Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) were cultured on micropatterned collagen coated hydrogels of physiological stiffnesses to facilitate maturation and optical measurements were performed for their structural and functional analyses. Control groups were cultured on collagen coated glass well plates. These image recordings were used as the real data to train the GAN model. Results: The results show the GAN approach is able to replicate true features from the real data, and inclusion of such synthetic data significantly improves the classification accuracy compared to usage of only real experimental data that is often limited in scale and diversity. Conclusion: The proposed model outperformed four conventional machine learning algorithms with respect to improved data generalization ability and data classification accuracy by incorporating synthetic data. Significance: This work demonstrates the importance of integrating synthetic data in situations where there are limited sample sizes and thus, effectively addresses the challenges imposed by data availability.

18.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562790

RESUMO

Adolescent inhibition of thalamo-cortical projections from postnatal day P20-50 leads to long lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuit connectivity during adolescence. Here, we used chemogenetic tools to inhibit thalamo-prefrontal projections in the mouse from P20-35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target twenty-four hours later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III nucleus accumbens (NAc) and layer V/VI medio-dorsal thalamus projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only changed in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosally-projecting neurons. Increased inhibition of intra-prefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition (P20-P35).

19.
Foods ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611338

RESUMO

Cocoa beans (Theobroma cacao L.) can be used for craft chocolate production, which arouses consumer interest due to their perceived better quality. This study aimed to evaluate the chemical profile of 80% artisanal chocolate samples produced with cocoa beans subjected to different maturation conditions. In the first maturation process, beans were matured under no-oxygen conditions, and in the second, the toasted beans were matured in oak barrels. The volatile compounds of the chocolate samples were extracted by the solid-phase microextraction method in headspace mode and analyzed by gas chromatography/mass spectrometer. The non-volatile compounds were extracted with methanol and analyzed through paper spray mass spectrometry. Overall, 35 volatile compounds belonging to different chemical classes (acids, alcohols, aldehydes, ketones, esters, and pyrazines) were identified, such as propanoic acid and butane-2,3-diol. In addition, 37 non-volatile compounds, such as procyanidin A pentoside and soyasaponin B, were listed. Tannins, flavonoids, and phenylpropanoids were the main chemical classes observed, varying between the two samples analyzed. Therefore, it was possible to verify that maturation conditions affected the metabolomic profile of the 80% artisanal chocolate samples, being able to influence the sensory characteristics and bioactive compounds profile. Given these results, the sensory evaluation of these chocolates is suggested as the next step.

20.
Animals (Basel) ; 14(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612369

RESUMO

Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...